Contact Graphs of Circular Arcs
نویسندگان
چکیده
We study representations of graphs by contacts of circular arcs, CCA-representations for short, where the vertices are interiordisjoint circular arcs in the plane and each edge is realized by an endpoint of one arc touching the interior of another. A graph is (2, k)-sparse if every s-vertex subgraph has at most 2s− k edges, and (2, k)-tight if in addition it has exactly 2n− k edges, where n is the number of vertices. Every graph with a CCA-representation is planar and (2, 0)-sparse, and it follows from known results that for k ≥ 3 every (2, k)-sparse graph has a CCA-representation. Hence the question of CCA-representability is open for (2, k)-sparse graphs with 0 ≤ k ≤ 2. We partially answer this question by computing CCA-representations for several subclasses of planar (2, 0)-sparse graphs. Next, we study CCA-representations in which each arc has an empty convex hull. We show that every plane graph of maximum degree 4 has such a representation, but that finding such a representation for a plane (2, 0)-tight graph with maximum degree 5 is NP-complete. Finally, we describe a simple algorithm for representing plane (2, 0)-sparse graphs with wedges, where each vertex is represented with a sequence of two circular arcs (straight-line segments).
منابع مشابه
Coverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملNormal Helly circular-arc graphs and its subclasses
A Helly circular-arc modelM = (C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, thenM is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, thenM is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal He...
متن کاملOn circular-arc graphs having a model with no three arcs covering the circle
An interval graph is the intersection graph of a finite set of intervals on a line and a circular-arc graph is the intersection graph of a finite set of arcs on a circle. While a forbidden induced subgraph characterization of interval graphs was found fifty years ago, finding an analogous characterization for circular-arc graphs is a long-standing open problem. In this work, we study the inters...
متن کاملHadwiger's conjecture for proper circular arc graphs
Circular arc graphs are graphs whose vertices can be represented as arcs on a circle such that any two vertices are adjacent if and only if their corresponding arcs intersect. Proper circular arc graphs are graphs which have a circular arc representation where no arc is completely contained in any other arc. Hadwiger’s conjecture states that if a graph G has chromatic number k, then a complete ...
متن کاملDrawing Planar Graphs with Circular Arcs
In this paper we address the problem of drawing planar graphs with circular arcs while maintaining good angular resolution and small drawing area. We present a lower bound on the area of drawings in which edges are drawn using exactly one circular arc. We also give an algorithm for drawing n-vertex planar graphs such that the edges are sequences of two continuous circular arcs. The algorithm ru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015